Mechanism of hemolysis and erythrocyte transformation caused by lipogrammistin-A, a lipophilic and acylated cyclic polyamine from the skin secretion of soapfishes (Grammistidae)

Bioorg Med Chem. 1999 Sep;7(9):2073-81. doi: 10.1016/s0968-0896(99)00128-5.

Abstract

The mechanism of hemolysis and erythrocyte transformation caused by lipogrammistin-A (LGA), a lipophilic and acylated cyclic polyamine from the skin secretion of soapfishes (Grammistidae), was investigated. The dependency of hemolysis on the erythrocyte concentration indicated that the amount of membrane-bound LGA required for 50% hemolysis is about 13% of the total phospholipids in erythrocytes on a molar basis. A synthetic analogue which lacked a long alkyl chain exhibited much less activity, suggesting that the alkyl chain is important for membrane-binding. In addition, microscopic observations showed that LGA elicited the invagination of erythrocytes at sublytic concentrations, which makes LGA one of the most potent agents with this transforming activity known to date. Its protonated secondary amino group is responsible for the unequal distribution of LGA in the inner leaflet of the lipid bilayer, which leads to invagination, since acetylation at the amino group markedly reduced the invagination activity. Furthermore, the size of LGA-induced lesions on erythrocyte membrane was estimated to be 7-29 A based on osmotic protection experiments, where the external addition of isotonic molecules in this size range gradually increased the effective dose of LGA. Based on these lines of evidence, the mode of LGA action on erythrocytes is deduced to be as follows. First, LGA molecules bind to erythrocyte membrane by lipophilicity. Second, the molecules accumulate in the inner leaflet of the lipid bilayer by interaction of their cationic ammonium groups with acidic residues of membrane lipid in the inner surface. This uneven distribution of LGA distorts the bilayer structure, and results in a change in cell shape and consequent small lesions. Third, small solutes permeate through the lesions, which induces an osmotic change across the membrane, which leads to colloid-osmotic rupture. This mode of action of LGA on erythrocytes accompanied by cell invagination is the first reported example for natural defense substances.

MeSH terms

  • Animals
  • Erythrocyte Deformability / drug effects*
  • Erythrocyte Membrane / drug effects*
  • Fishes
  • Hemolysis / drug effects*
  • Heterocyclic Compounds / pharmacology*
  • Humans
  • Skin / metabolism*
  • Spectrum Analysis
  • Thermodynamics

Substances

  • Heterocyclic Compounds
  • lipogrammistin A