Localization of alpha1B-adrenergic receptor in female rat brain regions involved in stress and neuroendocrine function

Neurochem Int. 1999 Nov;35(5):383-91. doi: 10.1016/s0197-0186(99)00077-7.

Abstract

Activation of alpha1-adrenergic receptors has been linked to the control of blood pressure, neuroendocrine secretion, reproductive behavior and mood. The present study describes the distribution of alpha1B-adrenergic receptor immunoreactivity in female rat brain regions involved in stress and neuroendocrine function. The pattern of immunolabeling seen resembles that obtained in previous in situ hybridization studies. Several hypothalamic areas that control pituitary function showed intense fiber and/or cell immunolabeling, including the paraventricular nucleus of the hypothalamus, the supraoptic nucleus, and the median eminence. Some regions such as the arcuate nucleus, the median eminence, and dorsal hypothalamus exhibit intense labeling of axonal varicosities, while other regions exhibit only perikarya immunolabeling. alpha1B-adrenergic receptor immunoreactivity was also observed in large pyramidal neurons of layer V of the cerebral cortex, the frontal cortex showing a particularly strong immunoreactivity. Virtually all thalamic regions were labeled, especially the lateral and ventral areas. In addition, labeled cells were present in hippocampus, the medial septum, the horizontal and vertical limbs of the diagonal band of Broca, and the caudate putamen. Finally, some midbrain and hindbrain regions important for motor function were immunoreactive. Because ligands specific for alpha1-adrenergic receptor subtypes are not available, the present immunocytochemical study not only addresses the subcellular and regional distribution of alpha1B-adrenergic receptors but may also provide clues about receptor subtype-specific function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Brain / physiology
  • Female
  • Immunohistochemistry
  • Neurosecretory Systems / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Adrenergic, alpha-1 / metabolism*
  • Stress, Physiological / metabolism*

Substances

  • Adra1b protein, rat
  • Receptors, Adrenergic, alpha-1