Ulnar variance and skeletal maturity of radius and ulna in female gymnasts

Med Sci Sports Exerc. 1999 May;31(5):653-7. doi: 10.1097/00005768-199905000-00005.

Abstract

It is has been suggested that repetitive loading on the distal end of the radius in elite gymnasts may lead to epiphyseal changes, a premature closure (union) of the radius growth plate, and ulnar overgrowth.

Purpose: It is hypothesized that ulnar overgrowth in female gymnasts is associated with advanced maturity status and early onset of epiphyseal closure of the radius, and later maturity status and later onset of epiphyseal closure of the ulnar.

Methods: Posterior-anterior radiographs of 201 female gymnasts, participants of the 1987 World Championships Artistic Gymnastics, were used to measure ulnar overgrowth, to determine skeletal maturation of the hand and wrist with the Tanner-Whitehouse technique, and to determine the maturity status of the radius and ulna separately, particularly with regard to the onset of epiphyseal closure. To test the hypothesis, extreme quintiles for ulnar overgrowth were contrasted for skeletal maturation of the hand and wrist and for maturity stages of the radius and ulna as defined by the Tanner-Whitehouse criteria.

Results: Female gymnasts who demonstrate ulnar overgrowth are skeletally more advanced in maturity status of the entire hand-wrist compared with gymnasts who did not show ulnar overgrowth. There were, however, no differences between gymnasts in the extreme quintiles of ulnar overgrowth in the maturation of the radius, although gymnasts with ulnar overgrowth show more advanced maturity status of the ulna.

Conclusions: Ulnar overgrowth is thus not apparently associated with advanced maturity of the distal radial epiphysis as defined in protocols for assessing skeletal maturity and does not apparently lead to premature epiphyseal closure of the distal radius.

MeSH terms

  • Adolescent
  • Arm / physiology*
  • Bone Development*
  • Bone and Bones / physiology*
  • Female
  • Gymnastics / physiology*
  • Humans