Specific regulation of fos family transcription factors in thymocytes at two developmental checkpoints

Int Immunol. 1999 May;11(5):677-88. doi: 10.1093/intimm/11.5.677.

Abstract

A central question in T cell development is what makes cortical thymocytes respond to stimulation in a qualitatively different way than any other thymocyte subset. Part of the answer is that AP-1 function changes drastically at two stages of T cell development. It undergoes striking down-regulation as thymocytes differentiate from immature, CD4(-)CD8(-) double-negative (DN) TCR- thymocytes to CD4(+)CD8(+) double-positive (DP) TCRlo cortical cells, and then returns in the cells that mature to TCRhigh, CD4(+)CD8(-) or CD4(-)CD8(+) single-positive (SP) thymocytes. At all three stages, the jun family mRNAs can be induced similarly. However, we demonstrate that DP cortical thymocytes are specifically impaired in c-fos and fosB mRNA induction, even when stimuli are used that optimize survival of the cells and a form of in vitro maturation. fra-2 expression is induction independent but much lower in DP cells than in the other subsets. Overall Fos family protein induction accordingly is severely decreased in DP cells. Defective c-Fos and FosB expression in cortical thymocytes is functionally significant, because antibody supershift experiments show that in activated immature and mature thymocytes, most detectable AP-1 DNA-binding complexes do contain c-Fos or FosB. Thus, defective c-Fos and FosB expression in cortical thymocytes qualitatively alters any AP-1 complexes they might express. The cortical thymocytes are not deficient in mRNA expression for any of the constitutive transcription factors that are known to be needed to drive c-Fos or FosB expression, so it is possible that the activity of these factors is developmentally regulated through a post-transcriptional mechanism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Gene Expression Regulation, Developmental*
  • Mice
  • Mice, Inbred C57BL
  • Proto-Oncogene Proteins c-fos / genetics*
  • RNA, Messenger / analysis
  • T-Lymphocytes / metabolism*
  • Transcription Factor AP-1 / metabolism

Substances

  • Proto-Oncogene Proteins c-fos
  • RNA, Messenger
  • Transcription Factor AP-1