Neuropsychopharmacological properties of neuroactive steroids

Steroids. 1999 Jan-Feb;64(1-2):83-91. doi: 10.1016/s0039-128x(98)00101-9.

Abstract

In addition to the well-known genomic effects of steroid molecules via intracellular steroid receptors, certain steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been thought not to interact with intracellular receptors, but enhance gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA(A) receptors. We demonstrated that these neuroactive steroids can regulate also gene expression via the progesterone receptor after intracellular oxidation. Thus, in physiological concentrations these neuroactive steroids regulate neuronal function through their concurrent influence on transmitter-gated ion channels and gene expression. When administered in animal studies, memory-enhancing effects have been shown for pregnenolone sulfate and DHEA. The 3alpha-hydroxy ring A-reduced neuroactive steroids predominantly display anxiolytic, anticonvulsant, and hypnotic activities. Sleep studies evaluating the effects of progesterone as a precursor molecule for these neuroactive steroids revealed a sleep electroencephalogram pattern similar to that obtained by the administration of benzodiazepines. These findings extend the concept of a "cross-talk" between membrane and nuclear hormone effects and provide a new role for the therapeutic application of these steroids in neurology and psychiatry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Dehydroepiandrosterone / pharmacology
  • Dehydroepiandrosterone / physiology
  • Nervous System Physiological Phenomena / drug effects*
  • Pregnenolone / pharmacology
  • Pregnenolone / physiology
  • Progesterone / pharmacology
  • Progesterone / physiology
  • Steroids / pharmacology*
  • Steroids / physiology

Substances

  • Steroids
  • Dehydroepiandrosterone
  • Progesterone
  • Pregnenolone