Review of orthopaedic manipulator arms

Stud Health Technol Inform. 1998:50:202-8.

Abstract

Trajectory planning and implementation forms a substantial part of current and future orthopaedic practice. This type of surgery is governed by a basic orthopaedic principle [1] which involves the placement of a surgical tool at a specific site within a region, via a trajectory which is planned from X-ray based 2D images and governed by 3D anatomical constraints. The accuracy and safety of procedures utilising the basic orthopaedic principle depends on the surgeon's judgement, experience, ability to integrate images, utilisation of intra-operative X-ray, knowledge of anatomical-biomechanical constraints and eye hand dexterity. The surgeon must remain as the responsible medical expert in charge of the overall system. At the same time the surgeon covets the accuracy offered by Computer Assisted Surgery including a manipulator. A summary of current inadequacies of manipulators indicates that the main drivers for future work are that accuracy is critical in close contact with the environment, safety concerns dictate manipulator geometry and technological limitations are many. In any effort to develop an optimal manipulator to guide surgical instruments and tools it is an obvious first step to review and categorise current manipulators. The aim of this paper is to review all aspects of manipulator design against the five main criteria of ergonomics; safety; accuracy; sterility and measurable benefits such as reduced operative time, reduced surgical trauma and improved clinical results.

MeSH terms

  • Equipment Design
  • Equipment Safety
  • Ergonomics
  • Humans
  • Orthopedic Equipment / trends*
  • Robotics*
  • Surgical Equipment / trends*
  • Therapy, Computer-Assisted / instrumentation*