Chloroperoxidase-catalyzed enantioselective oxidation of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidants

Biotechnol Bioeng. 1999 Feb;62(4):489-493. doi: 10.1002/(sici)1097-0290(19990220)62:4<489::aid-bit13>3.0.co;2-7.

Abstract

The chloroperoxidase catalyzed oxidation of methyl phenyl sulfide to (R)-methyl phenyl sulfoxide was investigated, both in batch and membrane reactors, using as oxidant H2O2, or O2 in the presence of either dihydroxyfumaric acid or ascorbic acid. The effects of pH and nature and concentration of the oxidants on the selectivity, stability, and productivity of the enzyme were evaluated. The highest selectivity was displayed by ascorbic acid/O2, even though the activity of chloroperoxidase with this system was lower than that obtained with the others. When the reaction was carried out in a membrane reactor, it was possible to reuse the enzyme for several conversion cycles. The results obtained with ascorbic acid/O2 and dihydroxyfumaric acid/O2 as oxidants do not seem to be compatible with either a mechanism involving hydroxyl radicals as the active species or with the hypothesis that oxidation occurs through the initial formation of H2O2. Copyright 1999 John Wiley & Sons, Inc.