The crystal structure and biochemical properties of DHBPS from Streptococcus pneumoniae, a potential anti-infective target for Gram-positive bacteria

Protein Expr Purif. 2013 Oct;91(2):161-8. doi: 10.1016/j.pep.2013.07.007. Epub 2013 Aug 15.

Abstract

The enzymes involved in riboflavin biosynthesis are considered to be potential anti-bacterial drug targets because these proteins are essential in bacterial pathogens but are absent in humans. 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) is one of the key enzymes in the biosynthesis of riboflavin. DHBPS catalyzes the conversion of ribulose-5-phosphate (Ru5P) to 3,4-Dihydroxy-2-butanone-4-phosphate (DHBP) and formate. The purified SpDHBPS enzyme, in the presence of Mg(2+) ion, catalyzed the conversion of Ru5P to DHBP at a rate of 109nmolmin(-1)mg(-1) with an apparent Km value of 181μM at 37°C. Surprisingly, our experiments first revealed that DHBPS showed activity in the presence of the trivalent metal ion, Fe(3+). Furthermore, we determined the crystal structure of DHBPS from Gram-positive bacteria, Streptococcus pneumoniae, with 2.0Å resolution. The overall architecture of SpDHBPS was similar to its homologs, which comprise one β-sheet (five-stranded) and eight α-helices, adopting a three-layered α-β-α sandwich fold. Similar to the homologs, gel-filtration experiments verified that the enzyme was arranged as a dimer. Although the overall fold of DHBPS was similar, the significant structural differences between the species at the active site region may be utilized to develop antibacterial agents that are species-specific.

Keywords: 3,4-Dihydroxy-2-butanone-4-phosphate synthase; 3,4-dihydroxy-2-butanone-4-phosphate; 3,4-dihydroxy-2-butanone-4-phosphate synthase; 3,4-dihydroxy-2-butanone-4-phosphate synthase of Streptococcus pneumonia; Crystal structure; DHBP; DHBPS; DMSO; Enzyme analysis; PCR; PDB; Ru5P; S. pneumonia; SpDHBPS; Streptococcus pneumonia; Streptococcus pneumoniae; dimethyl sulfoxide; polymerase chain reaction; protein data bank; ribulose-5-phosphate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / isolation & purification
  • Bacterial Proteins / metabolism
  • Catalytic Domain
  • Drug Delivery Systems
  • Enzyme Stability
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Intramolecular Transferases / chemistry*
  • Intramolecular Transferases / genetics
  • Intramolecular Transferases / isolation & purification
  • Intramolecular Transferases / metabolism
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Conformation
  • Protein Multimerization
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / isolation & purification
  • Recombinant Fusion Proteins / metabolism
  • Sequence Alignment
  • Streptococcus pneumoniae / enzymology*
  • Streptococcus pneumoniae / genetics

Substances

  • Bacterial Proteins
  • Recombinant Fusion Proteins
  • Intramolecular Transferases
  • L-3,4-dihydroxy-2-butanone-4-phosphate synthase