Chemical fingerprint and source apportionment of PM2.5 in highly polluted events of southern Taiwan

Environ Sci Pollut Res Int. 2020 Mar;27(7):6918-6935. doi: 10.1007/s11356-019-07328-8. Epub 2019 Dec 26.

Abstract

To investigate the spatial distribution and diurnal variation of the chemical composition of PM2.5 pollution in an industrial city of southern Taiwan, 12-h PM2.5 was diurnally continuously collected simultaneously at the Kaoping Air Quality Zone (KAQZ) during one highly PM2.5-polluted episode. Water-soluble ions, metallic elements, carbonaceous contents, dicarboxylic acids, and anhydrosugars were analyzed to characterize the chemical fingerprint of PM2.5. Backward trajectory simulation and chemical mass balance (CMB) receptor modeling were applied to identify the potential sources of PM2.5 and their contributions. It showed that Chaozhou (rural area) accompanying the highest SORs and NORs suffered from the most severe PM2.5 pollution during the episode. Sulfate (SO42-) was probably formed by the atmospheric chemical reaction in the daytime, while NO3- processed at nighttime at the KAQZ. A homogeneous formation of NO3- occurred at Chaozhou. The concentrations of Zn, Pb, Fe, Cu, V, and Al, mainly emitted from anthropogenic sources, increased significantly at the KAQZ. The highest OC, SOC/OC, and DA/OCs at Daliao (industrial area) were attributed to the transformation of primary VOCs to secondary OC via photo-oxidation during the episode. Oxalic acid was mainly produced through photochemical reactions since a high correlation between oxalic acid and Ca2+ was observed at Nanzi (urban area) and Daliao during the episode. During the episode, PM2.5 mostly originated from local primary or secondary aerosol than long-range overseas transport. The dominant source was anthropogenic emissions, accounting for 67.1% and 70.4% of PM2.5 at Nanzi and Daliao, respectively. At Chaozhou, the contribution of anthropogenic emissions was the lowest (42.4%), but secondary aerosols had the highest contribution of 38.3% of PM2.5 among the three areas during the episode.

Keywords: Atmospheric fine particles (PM2.5); Chemical characteristics; PM2.5 episode; Secondary aerosols; Source apportionment.

MeSH terms

  • Aerosols
  • Air Pollutants*
  • Cities
  • Environmental Monitoring*
  • Particulate Matter*
  • Taiwan
  • Vehicle Emissions

Substances

  • Aerosols
  • Air Pollutants
  • Particulate Matter
  • Vehicle Emissions