Estimated versus field measured soil gas radon concentration and soil gas permeability

J Environ Radioact. 2023 Sep:265:107224. doi: 10.1016/j.jenvrad.2023.107224. Epub 2023 Jun 23.

Abstract

Prediction of areas with elevated natural radiation is fundamental for the prevention of human exposure. Soil gas radon activity concentration and soil gas permeability are predictive parameters for the radon potential, which has great importance in areas where future urban development is planned. In this study, the soil gas radon equilibrium concentration (C∞) and soil gas permeability (K) were estimated through the application of theoretical and empirical models found in the literature. These models apply soil properties as input parameters. Using already existing soil parameters to predict the radon potential of an area would be useful in avoiding direct field measurements. Therefore, in this study, we examined whether the estimated soil gas radon activity concentration and soil gas permeability values match the values measured in the field. The soil gas radon activity concentration estimated by two theoretical models is about 50% of the measured value in the studied area. This underestimation can be attributed to the assumption that the radon activity concentration measured in the field depends only on soil parameters and the models do not take into account the underlying bedrock. Additionally, these models neglect the radon transport by advection and consider only the radon availability and migration in homogeneous media. Furthermore, they do not count certain characteristics of the soil that can be relevant, e.g. organic matter and clay content in the soil. To investigate more in detail such soil characteristics, seven samples located roughly along the slope, were selected to determine the soil chemical composition by ICP-MS. Evaluating the physical and chemical properties of the soil, it was found that the sampling sites with pH < 8 (low calcium content) the preferential adsorption was a dominant process. This causes radium enrichment in organic matter and clay, which directly influence the soil gas radon activity concentration. At pH > 8, radium is no longer preferentially adsorbed on organic matter but continues to be adsorbed on clays albeit this process is weak because radium competes with calcium cations. Also, there are other factors that may affect radon emanation in soil such as radium concentration and distribution, porosity and water content. In contrast, empirical model of soil gas permeability overestimates the measured value in the study area by an order of magnitude. A new model was made by modifying the previously proposed one, which can be used as a guide for the estimation of the median value of soil gas permeability in granitic areas, but not as an accurate predictor due to the lack of correlation between the estimated and measured values.

MeSH terms

  • Calcium
  • Clay
  • Humans
  • Permeability
  • Radiation Monitoring*
  • Radium* / analysis
  • Radon* / analysis
  • Soil / chemistry
  • Soil Pollutants, Radioactive* / analysis

Substances

  • Radon
  • Soil
  • Clay
  • Radium
  • Calcium
  • Soil Pollutants, Radioactive