Analysis of Correlation between Structure and Properties of Carboxymethyl Cellulose Film Loaded with Eu3+ and Tb3+ Fluorescence by Rheology at Different Drying Stages

Polymers (Basel). 2022 Apr 20;14(9):1655. doi: 10.3390/polym14091655.

Abstract

The influences of interactions between carboxymethyl cellulose (CMC) and CMC/europium (III)-terbium (III) (CET) on the structure and properties of the resultant CMC/CET films were investigated by rheology at three stages of the film-drying process. According to the water content at different drying times, the kinetics curves during the film-drying process were drawn. Then, the rheology properties of film-forming solutions during the drying process were characterized by dynamic modulus, Han plots, zero shear complex viscosity and relaxation time. When the water content was 90%, the film contained either 0.1 or 0.2 g of CET, which had good fluidity, while the film with 0.3 g of CET was elastic-dominated. Han plots and XRD analyses showed that the interactions between the CMC and CET were not hydrogen bonds but random entanglements. The zero-shear complex viscosity and relaxation time spectrum confirmed that the entanglements enhanced as the CET content increased. Meanwhile, aggregation formed in the solution of CMC with 0.3 g of CET. When CMC-CET films with different CET additions were compared, the film with 0.2 g of CET had an even and tight sheet structure, the greatest fluorescence intensity, and superior tensile strength of 78.76 MPa.

Keywords: fluorescent carboxymethyl cellulose; mechanical property; polymer chain; rheological properties.