Potential Applications of Dual Haptoglobin Expression in the Reclassification and Treatment of Hepatocellular Carcinoma

Transl Res. 2024 May 28:S1931-5244(24)00108-7. doi: 10.1016/j.trsl.2024.05.008. Online ahead of print.

Abstract

HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. Current research on HCC using scRNA-seq is predominantly focused on immune and stromal cells. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.

Keywords: Hepatocellular carcinoma; dual expression; haptoglobin; reclassification; single-cell.