Preparation of a Novel Lignocellulose-Based Aerogel by Partially Dissolving Medulla Tetrapanacis via Ionic Liquid

Gels. 2024 Feb 9;10(2):138. doi: 10.3390/gels10020138.

Abstract

A novel lignocellulosic aerogel, MT-LCA, was successfully prepared from MT by undergoing partial dissolution in an ionic liquid, coagulation in water, freezing in liquid nitrogen, and subsequent freeze-drying. The MT-LCA preserves its original honeycomb-like porous structure, and the newly formed micropores contribute to increased porosity and specific surface area. FT-IR analysis reveals that MT, after dissolution and coagulation, experiences no chemical reactions. However, a change in the crystalline structure of cellulose is observed, transitioning from cellulose I to cellulose II. Both MT and MT-LCA demonstrate a quasi-second-order kinetic process during methylene blue adsorption, indicative of chemical adsorption. The Langmuir model proves to be more appropriate for characterizing the methylene blue adsorption process. Both adsorbents exhibit monolayer adsorption, and their effective adsorption sites are uniformly distributed. The higher porosity, nanoscale micropores, and larger pore size in MT-LCA enhance its capillary force, providing efficient directional transport performance. Consequently, the prepared MT-LCA displays exceptional compressive performance and efficient directional transport capabilities, making it well-suited for applications requiring high compressive performance and selective directional transport.

Keywords: Medulla tetrapanacis; absorption of dye; ionic liquid; lignocellulose-based aerogel.