A Condition Evaluation Simplified Method for Traction Converter Power Module Based on Operating Interval Segmentation

Sensors (Basel). 2023 Feb 24;23(5):2537. doi: 10.3390/s23052537.

Abstract

In the actual operation of urban rail vehicles, it is essential to evaluate the condition of the traction converter IGBT modules. Considering the fixed line and the similarity of operation conditions between adjacent stations, this paper proposes an efficient and accurate simplified simulation method to evaluate IGBT conditions based on operating interval segmentation (OIS). Firstly, this paper proposes the framework for a condition evaluation method by segmenting operating intervals based on the similarity of average power loss between neighboring stations. The framework makes it possible to reduce the number of simulations to shorten the simulation time while ensuring the state trend estimation accuracy. Secondly, this paper proposes a basic interval segmentation model that uses the operating conditions as inputs to implement the segmentation of the line and is able to simplify the operation conditions of entire line. Finally, the simulation and analysis of the temperature and stress fields of IGBT modules based on segmented intervals completes the IGBT module condition evaluation and realizes the combination of lifetime calculation with actual operating conditions and internal stresses. The validity of the method is verified by comparing the interval segmentation simulation with actual test results. The results show that the method can effectively characterize the temperature and stress trends of traction converter IGBT modules in the whole line, which could support the fatigue mechanism and lifetime assessment reliability study of IGBT modules.

Keywords: condition evaluation simplified method; lifetime assessment; operating interval segmentation; power module of traction converter; temperature and fatigue stress.