In Situ Fabrication of N-Doped ZnS/ZnO Composition for Enhanced Visible-Light Photocatalytic H2 Evolution Activity

Molecules. 2022 Dec 4;27(23):8544. doi: 10.3390/molecules27238544.

Abstract

For achieving the goal of peaking carbon dioxide emissions and achieving carbon neutrality, developing hydrogen energy, the green and clean energy, shows a promising perspective for solving the energy and ecological issues. Herein, firstly, we used the hydrothermal method to synthesize the ZnS(en)0.5 as the precursor. Then, ZnS/ZnO composite was obtained by the in situ transformation of ZnS(en)0.5 with heat treatment under air atmosphere. The composition, optical property, morphology, and structural properties of the composite were characterized by X-ray photoemission spectroscopy (XPS), Ultraviolet-visible absorption spectra (Uv-vis Abs), Scanning electron microscopy (SEM) and Transmission electron microscopy image (TEM). Moreover, the content of ZnO in ZnS/ZnO was controlled via adjustment of the calcination times. The visible-light response of ZnS/ZnO originated from the in situ doping of N during the transformation of ZnS(en)0.5 to ZnS/ZnO under heat treatment, which was verified well by XPS. Photocatalytic hydrogen evolution experiments demonstrated that the sample of ZnS/ZnO-0.5 h with 6.9 wt% of ZnO had the best H2 evolution activity (1790 μmol/h/g) under visible light irradiation (λ > 400 nm), about 7.0 and 12.3 times that of the pure ZnS and ZnO, respectively. The enhanced activities of the ZnS/ZnO composites were ascribed to the intimated hetero-interface between components and efficient transfer of photo-generated electrons from ZnS to ZnO.

Keywords: N-doped; ZnS/ZnO; heterojunction; photocatalytic H2 evolution.

MeSH terms

  • Catalysis
  • Hydrogen* / chemistry
  • Light*
  • Microscopy, Electron, Transmission
  • Photoelectron Spectroscopy

Substances

  • Hydrogen