Study of Microwave-Induced Ag Nanowire Welding for Soft Electrode Conductivity Enhancement

Micromachines (Basel). 2021 May 27;12(6):618. doi: 10.3390/mi12060618.

Abstract

Silver nanowire (AgNW)-coated thin films are widely proposed for soft electronics application due to their good conductivity, transparency and flexibility. Here, we studied the microwave welding of AgNW-based soft electrodes for conductivity enhancement. The thermal effect of the microwave to AgNWs was analyzed by dispersing the nanowires in a nonpolar solution, the temperature of which was found to be proportional with the nanowire diameters. AgNWs were then coated on a thin film and welded under microwave heating, which achieved a film conductivity enhancement of as much as 79%. A microwave overheating of AgNWs, however, fused and broke the nanowires, which increased the film resistance significantly. A soft electrode was finally demonstrated using the microwave-welded AgNW thin film, and a 1.13 µA/mM sensitivity was obtained for glucose sensing. Above all, we analyzed the microwave thermal effect on AgNWs to provide a guidance to control the nanowire welding effect, which can be used for film conductivity enhancement and applied for soft and bio-compatible electrodes.

Keywords: Ag nanowires; glucose sensing; microwave heating; thermal welding.