Site-Selective Incorporation of a Functional Group into Lys175 in the Vicinity of the Active Site of Chymotrypsin by Using Peptidyl α-Aminoalkylphosphonate Diphenyl Ester-Derivatives

Molecules. 2023 Mar 31;28(7):3150. doi: 10.3390/molecules28073150.

Abstract

We previously reported that Lys175 in the region of the active site of chymotrypsin (Csin) could be site-selectively modified by using an N-hydroxy succinimide (NHS) ester of the peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester [NHS-Suc-Ala-Ala-PheP(OPh)2]. In this study, the Lys175-selective modification method was expanded to incorporate functional groups into Lys 175 in Csin. Two types of peptidyl phosphonate derivatives with the dansyl group (Dan) as a functional molecule, Dan-β-Ala-[Asp(NHS) or Glu(NHS)]-Ala-Ala-(R)-PheP(OPh)2 (DanD and DanE, respectively), were synthesized, and their action was evaluated when modifying Lys175 in Csin. Ion-exchange chromatography (IEC), fluorescence spectroscopy, and LC-MS/MS were used to analyze the products from the reaction of Csin with DanD or DanE. By IEC and LC-MS/MS, the results showed that DanE reacted with Csin more effectively than DanD to produce the modified Csin (DanMCsin) bearing Dan at Lys175. DanMCsin exhibited an enzymatic activity corresponding to 1/120 of Csin against Suc-Ala-Ala-Phe-pNA. In addition, an effect of Lys175 modification on the access of the proteinaceous Bowman-Birk inhibitor to the active site of DanMCsin was investigated. In conclusion, by using a peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester, we demonstrated that a functional group could be incorporated into Lys175 in Csin.

Keywords: chymotrypsin; dansyl group; diphenyl α-aminoalkylphosphonate; site-selective chemical modification.

MeSH terms

  • Catalytic Domain
  • Chromatography, Liquid
  • Chymotrypsin* / chemistry
  • Tandem Mass Spectrometry*

Substances

  • Chymotrypsin
  • diphenyl

Grants and funding

This research received no external funding.