Charging characteristics of long distance accumulator for underwater electro-hydraulic control system

Rev Sci Instrum. 2023 Dec 1;94(12):125008. doi: 10.1063/5.0168419.

Abstract

Long distance accumulators are widely used in underwater electro-hydraulic control systems. However, as the working depth increases, the underwater umbilical cable becomes longer. The actual physical properties of the gas in the accumulator change. These factors affect the charging characteristics of the accumulator. To address the above issues, a simulation model of the charging of the long distance accumulator under real operating conditions is developed. Among them, the real properties of the gas inside the accumulator were calculated using the Redlich-Kwong-Soave method. The coefficient of friction within the umbilical cable is based on the Reynolds number and relative roughness. The simulation data were compared with the experimental results in the South China Sea to verify the accuracy of the simulation model. The effects of key factors on the charging characteristics of the long distance accumulators were also analyzed. The results show that the simulation results are in good agreement with the experimental results. The law of accumulator charging was analyzed: the greater the pressure of the gas source, the smaller the accumulator charging time; the greater the working water depth, the shorter the accumulator charging time. The research provides guidance for the design of long distance accumulators.