A Cross-Scale Framework for Modelling Chloride Ions Diffusion in C-S-H: Combined Effects of Slip, Electric Double Layer and Ion Correlation

Materials (Basel). 2022 Nov 21;15(22):8253. doi: 10.3390/ma15228253.

Abstract

Water and chloride ions within pores of cementitious materials plays a crucial role in the damage processes of cement pastes, particularly in the binding material comprising calcium-silicate-hydrates (C-S-H). The migration mechanism of water and chloride ions restricted in C-S-H nanopores is complicated due to the presence of interfacial effects. The special mechanical properties of the solid-liquid interface determine the importance of boundary slip and Electric Double Layer (EDL) and ion diversity in pore solutions determines the difference of the EDL and the stability of water film slip. A cross-scale model covering slip effects, time-varying of EDL and ion correlation needs to be developed so that the interfacial effects concentrated at the pore scale can be extended to affect the overall diffusivity of C-S-H. The statistics of pore size distribution and fractal dimension were used to quantitatively compare the similarities between model and C-S-H structure, thus proving the reliability of cross-scale reconstructed C-S-H transmission model. The results show that the slip effect is the dominant factor affecting the diffusion ability of C-S-H, the contribution of the slip effect is up to 60% and the contribution rate of EDL time-varying only up to about 15%. Moreover, the slip effect is sensitive to both ion correlation and C-S-H inhomogeneity and EDL time-varying is almost insensitive to ion correlation changes. This quantification provides a necessary benchmark for understanding the destructiveness of cement-based materials in the salt rich environment and provides new insights into improving the durability of concrete by changing the solid-liquid interface on the micro-nanoscale.

Keywords: C-S-H; cross-scale; diffusion; interface effect.