Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring

Sensors (Basel). 2020 Aug 10;20(16):4451. doi: 10.3390/s20164451.

Abstract

The process parameters of selective laser melting (SLM) significantly influence molten pool formation. A comprehensive understanding and analysis, from a macroscopic viewpoint, of the mechanisms underlying these technological parameters and how they affect the evolution of molten pools are presently lacking. In this study, we established a dynamic finite element simulation method for the process of molten pool formation by SLM using a dynamic moving heat source. The molten pool was generated, and the dynamic growth process of the molten pool belt and the evolution process of the thermal field of the SLM molten pool were simulated. Then, a deposition experiment that implemented a new measurement method for online monitoring involving laser supplementary light was conducted using the same process parameters as the simulation, in which high-speed images of the molten pool were acquired, including images of the pool surface and cross-section images of the deposited samples. The obtained experimental results show a good agreement with the simulation results, demonstrating the effectiveness of the proposed algorithm.

Keywords: molten pool; moving heat source; selective laser melting (SLM); thermal field.