Evaluation of urban expansion and the impacts on vegetation in Chinese Loess Plateau: a multi-scale study

Environ Sci Pollut Res Int. 2023 Jan;30(3):6021-6032. doi: 10.1007/s11356-022-22633-5. Epub 2022 Aug 20.

Abstract

Vegetation degradation caused by rapid urban expansion is a pressing global challenge. Focusing on the Chinese Loess Plateau (CLP), we use satellite observations from 2000 to 2017 to evaluate the spatiotemporal pattern of urban expansion, and its imprint on vegetation across old urban, new urban, urban, non-urban areas as well as the entire urbanization intensity (UI) gradient (from 0 to 100%). We found a massive increase of urban impervious surface area (UISA) in the CLP from 2000 to 2017, and an uneven expansion of UISA at different urban agglomerations and cities. Less green were found in urban and new urban areas, while old urban and non-urban areas generally showed an improved greening pattern. In addition, the annual maximum EVI (EVImax) differences between urban and non-urban areas were - 0.0995 on average from 2000 to 2017. The Guanzhong Plain urban agglomeration (GPUA) witnessed the most significant EVImax differences (- 0.120), and the Ningxia Yanhuang urban agglomeration (NYUA) witnessed the lowest EVImax differences (- 0.012). The EVImax showed significantly decreased trends along the entire spectrum of urbanization gradient for 97.4% (38 of 39) cities and five urban agglomerations. The most significant decrease was found in the GUPA (slope = - 0.0197/10a, p < 0.01), while the smallest drop was found in the NYUA (slope = - 0.011/10a, p < 0.01). This study offered a fundamental support for understanding the vegetation variation along the urban-rural gradient, which may help stakeholders to make better ecological management policies for urban vegetation in ecologically fragile areas.

Keywords: Chinese Loess Plateau; EVI; Urbanization; Urbanization intensity; Vegetation degradation and improvement.

MeSH terms

  • China
  • Cities
  • Urbanization*