Selection and Characterization of Phosphate-Solubilizing Fungi and Their Effects on Coffee Plantations

Plants (Basel). 2023 Sep 26;12(19):3395. doi: 10.3390/plants12193395.

Abstract

The use of phosphate-solubilizing fungi in coffee cultivation is an alternative to the use of traditional fertilizers. The objective of this study was to analyze the mechanisms involved in the phosphorus solubilization of fungal strains and to evaluate the effect of a phosphate-solubilizing strain on coffee plants. For this, phosphorus-solubilizing fungal strains were selected for evaluation of their solubilization potential and phosphatase activity. Coffee plants were inoculated in the field with a phosphate-solubilizing strain, and the soil and foliar soluble phosphorus contents, as well as coffee bean yield, were quantified. Of the 151 strains analyzed, Sagenomella diversispora, Penicillium waksmanii, and Penicillium brevicompactum showed the highest solubilization. Aspergillus niger and P. waksmanii presented the highest soluble phosphorus values; however, P. brevicompactum showed the highest phosphatase activity. The P. brevicompactum strain inoculated on the coffee plants did not favor the foliar phosphorus content but increased the soil soluble phosphorus content in two of the coffee plantations. The plants inoculated with the phosphate-solubilizing strain showed an increase in coffee bean weight on all plantations, although this increase was only significant in two of the three selected coffee plantations.

Keywords: Coffea arabica var. Costa Rica; Penicillium brevicompactum; coffee bean production; filamentous fungi; phosphorous.

Grants and funding

This research was funded by a project COVEICYDET 131627: “Development of a fungal bioinoculant that solubilizes soil phosphorus and promotes the growth and productivity of coffee plants (Coffea arabica var. Costa Rica) in Jilotepec, Veracruz”.