Spatial Variability of Soil Properties and Portable X-Ray Fluorescence-quantified Elements of typical Golf Courses Soils

Sci Rep. 2020 Jan 16;10(1):519. doi: 10.1038/s41598-020-57430-y.

Abstract

Understanding and quantitative delineation of Portable X-Ray Fluorescence (PXRF) -quantified elements and soil properties spatial variability are important for healthy turf development for golf courses. In this study, PXRF-quantified elements and soil properties (except soil acidity and alkalinity (pH), electric conductivity (EC), and textures) of 200 soil samples were measured by PXRF analyzer at different golf courses in Lubbock, Amarillo, and Midland in Texas, and Hobbs in New Mexico. Furthermore, principal component analysis (PCA), empirical bayesian kriging (EBK) and the ordinary least square model (OLSM) were used in the study. Two kinds of components were extracted and interpreted by PCA, the results showed Zn, Ti, Fe, Rb, V, Mn and Zr were associated with the component 1, while Sr was associated with the component 2, the preliminary classification of PXRF-quantified elements was formed by PCA. The EBK approach was used to evaluate the spatial patterns of PXRF-quantified elements and soil properties. The OLSM model quantitatively related pH to EC, silt texture and the PXRF-quantified K, Ca and Sr. The integration of PCA, EBK and OLSM revealed quantitative links between soil pedogenesis and causes, spatial variability and couple relationships of PXRF-quantified elements and soil properties over golf courses.

Publication types

  • Research Support, Non-U.S. Gov't