Novel Surface Acoustic Wave Temperature-Strain Sensor Based on LiNbO3 for Structural Health Monitoring

Micromachines (Basel). 2022 Jun 9;13(6):912. doi: 10.3390/mi13060912.

Abstract

In this paper, we present the design of an integrated temperature and strain dual-parameter sensor based on surface acoustic waves (SAWs). First, the COMSOL Multiphysics simulation software is used to determine separate frequencies for multiple sensors to avoid interference from their frequency offsets caused by external physical quantity changes. The sensor consists of two parts, a temperature-sensitive unit and strain-sensitive unit, with frequencies of 94.97 MHz and 90.05 MHz, respectively. We use standard photolithography and ion beam etching technology to fabricate the SAW temperature-strain dual-parameter sensor. The sensing performance is tested in the ranges 0-250 °C and 0-700 μԑ. The temperature sensor monitors the ambient temperature in real time, and the strain sensor detects both strain and temperature. By testing the response of the strain sensor at different temperatures, the strain and temperature are decoupled through the polynomial fitting of the intercept and slope. The relationship between the strain and the frequency of the strain-sensitive unit is linear, the linear correlation is 0.98842, and the sensitivity is 100 Hz/μԑ at room temperature in the range of 0-700 μԑ. The relationship between the temperature and the frequency of the temperature-sensitive unit is linear, the linearity of the fitting curve is 0.99716, and the sensitivity is 7.62 kHz/°C in the range of 25-250 °C. This sensor has potential for use in closed environments such as natural gas or oil pipelines.

Keywords: strain sensor; surface acoustic wave; temperature sensor; wireless passive sensor.