Co-Channel Interference Suppression for LTE Passive Radar Based on Spatial Feature Cognition

Sensors (Basel). 2021 Dec 24;22(1):117. doi: 10.3390/s22010117.

Abstract

Passive radars based on long-term evolution (LTE) signals suffer from sever interferences. The interferences are not only from the base station used as the illuminator of opportunity (BS-IoO), but also from the other co-channel base stations (CCBS) working at the same frequency with the BS-IoO. Because the reference signals of the co-channel interferences are difficult to obtain, cancellation performance degrades seriously when traditional interference suppression methods are applied in LTE-based passive radar. This paper proposes a cascaded cancellation method based on the spatial spectrum cognition of interference. It consists of several cancellation loops. In each loop, the spatial spectrum of strong interferences is first recognized by using the cyclostationary characteristic of LTE signal and the compressed sensing technique. A clean reference signal of each interference is then reconstructed according to the spatial spectrum previously obtained. With the reference signal, the interferences are cancelled. At the end of each loop, the energy of the interference residual is estimated. If the interference residual is still strong, then the cancellation loop continues; otherwise it terminates. The proposed method can get good cancellation performance with a small-sized antenna array. Theoretical and simulation results demonstrate the effectiveness of the proposed method.

Keywords: co-channel interference suppression; long term evolution (LTE) signals; passive radar; spatial feature cognition.