Experimental Study of Flow Boiling Regimes Occurring in a Microfluidic T-Junction

Micromachines (Basel). 2023 Dec 13;14(12):2235. doi: 10.3390/mi14122235.

Abstract

Microchannel flow boiling is an efficient cooling method for high-heat-flux electronic devices. To understand the flow boiling regime in a T-shaped microchannel, this paper prepared T-shaped microchannels of different sizes and designed an experimental platform for the visualization of flow boiling in microchannels, and aimed to study the evolution characteristics of two-phase flow patterns in T-shaped microchannels. The influences of the flow rate and channel size on the boiling flow pattern inside a T-shaped microchannel were experimentally observed and quantitatively described. The results indicate that the occurrence position of the vaporization core gradually migrates from branch channel to main channel as the wall temperature increases. The flow boiling at the bifurcation of the T-shaped microchannel mainly includes the extrusion fracture flow, bubble flow, plug-annular alternating flow and annular flow, in which the annular flow can be further divided into the intermittent annular flow and the stable annular flow. In addition, a high flow rate and small channel size can lead to the disappearance of the bubble flow, and the presence of the bubble flow delays the appearance of the annular flow.

Keywords: boiling; bubble; flow pattern; microchannel.