First Report of Nigrospora osmanthi Causing Leaf Spot on Tartary Buckwheat in China

Plant Dis. 2020 Oct 6. doi: 10.1094/PDIS-08-20-1773-PDN. Online ahead of print.

Abstract

Buckwheat (Fagopyrum tataricum) is a traditional short-season pseudocereal crop originating in southwest China and is cultivated around the world. Antioxidative substances in buckwheat have been shown to provide many potential cardiovascular health benefits. Between August and November in 2019, a leaf spot was found in several Tartary buckwheat cv. Pinku1 fields in Xiangxiang County, Hunan Province, China. The disease occurred throughout the growth cycle of buckwheat after leaves emerged, and disease incidence was approximately 50 to 60%. Initially infected leaves developed a few round lesions, light yellow to light brown spots. Several days later, lesions began to enlarge with reddish brown borders, and eventually withered and fell off. Thirty lesions (2×2 mm) collected from three locations with ten leaves in each location were sterilized in 70% ethanol for 10 sec, in 2% sodium hypochlorite for 30 sec, rinsed in sterile water for three times, dried on sterilized filter paper, and placed on a potato dextrose PDA with lactic acid (3 ml/L), and incubated at 28°C in the dark for 3 to 5 days. Fungal colonies were initially white and later turned black with the onset ofsporulation. Conidia were single-celled, black, smooth, spherical to subspherical, and measured 9.2 to 15.6 µm long, and 7.1 to 11.6 µm wide (n=30). Each conidium was terminal and borne on a hyaline vesicle at the tip of conidiophores. Morphologically, the fungus was identified as Nigrospora osmanthi (Wang et al. 2017). Identification was confirmed by amplifying and sequencing the ITS region, and translation elongation factor 1-alpha (TEF1-α) and partial beta-tublin (TUB2) genes using primers ITS1/ITS4 (Mills et al. 1992), EF1-728F/EF-2 (Carbone and Kohn 1999; O'Donnell et al. 1998) and Bt-2a/Bt-2b (Glass et al. 1995), respectively. BLAST searches in GenBank indicated the ITS (MT860338), TUB2 (MT882054) and TEF1-α (MT882055) sequences had 99.80%, 99% and 100% similarity to sequences KX986010.1, KY019461.1 and KY019421.1 of Nigrospora osmanthi ex-type strain CGMCC 3.18126, respectively. A neighbor-joining phylogenetic tree constructed using MEGA7.0 with 1,000 bootstraps based on the concatenated nucleotide sequences of the three genes indicated that our isolate was closely related to N. osmanthi. Pathogenicity test was performed using leaves of healthy F. tataricum plants. The conidial suspension (1 × 106 conidia/ml) collected from PDA cultures with 0.05% Tween 20 buffer was used for inoculation by spraying leaves of potted 20-day-old Tartary buckwheat cv. Pinku1. Five leaves of each plant were inoculated with spore suspensions (1 ml per leaf). An equal number of control leaves were sprayed with sterile water to serve as a control. The treated plants were kept in a greenhouse at 28°C and 80% relative humidity for 24 h, and then transferred to natural conditions with temperature ranging from 22 to 30°C and relative humidity ranging from 50 to 60%. Five days later, all N. osmanthi-inoculated leaves developed leaf spot symptoms similar to those observed in the field, whereas control leaves remained healthy. N. osmanthi was re-isolated from twelve infected leaves with frequency of 100%, fulfilling Koch's postulates. The genus Nigrospora has been regarded by many scholars as plant pathogens (Fukushima et al. 1998) and N. osmanthi is a known leaf blight pathogen for Stenotaphrum secundatum (Mei et al. 2019) and Ficus pandurata (Liu et al. 2019) but has not been reported on F. tataricum. Nigrospora sphaerica was also detected in vegetative buds of healthy Fagopyrum esculentum Moench (Jain et al. 2012). To our knowledge, this is the first report of N. osmanthi causing leaf spot on F. tataricum in China and worldwide. Appropriate strategies should be developed to manage this disease.

Keywords: Buckwheat (Fagopyrum tataricum); Identification of pathogen; Leaf spot; Nigrospora osmanthi.