TMEM97/Sigma 2 Receptor Increases Estrogen Receptor α Activity in Promoting Breast Cancer Cell Growth

Cancers (Basel). 2023 Dec 2;15(23):5691. doi: 10.3390/cancers15235691.

Abstract

Aberrant estrogen receptor (ER) signaling is a major driver of breast tumor growth and progression. Sigma 2 receptor has long been implicated in breast carcinogenesis based on pharmacological studies, but its molecular identity had been elusive until TMEM97 was identified as the receptor. Herein, we report that the TMEM97/sigma 2 receptor is highly expressed in ER-positive breast tumors and its expression is strongly correlated with ERs and progesterone receptors (PRs) but not with HER2 status. High expression levels of TMEM97 are associated with reduced overall survival of patients. Breast cancer cells with increased expression of TMEM97 had a growth advantage over the control cells under both nutrition-limiting and sufficient conditions, while the knockdown of TMEM97 expression reduced tumor cell proliferations. When compared to their vector control cells, MCF7 and T47D cells with increased TMEM97 expression presented increased resistance to tamoxifen treatment and also grew better under estrogen-depleted conditions. The TMEM97/sigma 2 receptor enhanced the ERα transcriptional activities and increased the expression of genes responsive to estrogen treatment. Increased TMEM97 also stimulated the mTOR/S6K1 signaling pathways in the MCF7 and T47D cells. The increased level of active, phosphorylated ERα, and the enhanced resistance to tamoxifen treatment with increased TMEM97, could be blocked by an mTOR inhibitor. The knockdown of TMEM97 expression reduced the ERα and mTOR/S6K1 signaling activities, rendering the cells with an increased sensitivity to tamoxifen. The observations suggest that the TMEM97/sigma 2 receptor is a novel regulator of ERα activities in breast tumor cell growth.

Keywords: S6K1; TMEM97; estrogen receptor α; mTOR; sigma receptors; tamoxifen.

Grants and funding

This research received no external funding.