Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes

Materials (Basel). 2023 Jan 11;16(2):729. doi: 10.3390/ma16020729.

Abstract

Ceramic electrolytes hold application prospects in all-solid-state lithium batteries (ASSLB). However, the ionic conductivity of ceramic electrolytes is limited by their large thickness and intrinsic resistance. To cope with this challenge, a two-dimensional (2D) vermiculite film has been successfully prepared by self-assembling expanded vermiculite nanosheets. The raw vermiculite mineral is first exfoliated to thin sheets of several atomic layers with about 1.2 nm interlayer channels by a thermal expansion and ionic exchanging treatment. Then, through vacuum filtration, the ion-exchanged expanded vermiculite (IEVMT) sheets can be assembled into thin films with a controllable thickness. Benefiting from the thin thickness and naturally lamellar framework, the as-prepared IEVMT thin film exhibits excellent ionic conductivity of 0.310 S·cm-1 at 600 °C with low excitation energy. In addition, the IEVMT thin film demonstrates good mechanical and thermal stability with a low coefficient of friction of 0.51 and a low thermal conductivity of 3.9 × 10-3 W·m-1·K-1. This reveals that reducing the thickness and utilizing the framework is effective in increasing the ionic conductivity and provides a promising stable and low-cost candidate for high-performance solid electrolytes.

Keywords: ceramic electrolytes; film; ionic conduction; ionic exchanging; vermiculite.