Age-specific and species-specific tree response to seasonal drought in tropical dry forests

Sci Total Environ. 2022 Dec 1:850:157908. doi: 10.1016/j.scitotenv.2022.157908. Epub 2022 Aug 6.

Abstract

Millions of people depend on ecosystem services provided by Tropical Dry Forests (TDFs), yet their proximity to population centers, seasonally dry climate, and the ease at which they are converted to agriculture has left only 10 % of their original extent globally. As more TDFs become protected, basic information relating TDF age to subsurface water resources will help guide forest recovery. Severe deforestation and recent reforestation around Bahía de Caráquez, Ecuador produced a mosaic of different successional stages ideal for exploring relationships between TDF age, subsurface water availability and species-specific responses to seasonal drought. Over one year, we measured gravimetric water content, predawn and midday leaf water potential, and the stable isotope composition of xylem and source waters in two regenerating and one primary forest. Over the transition from wet to dry season, we discovered a sharper decrease in predawn water potential in younger successional forests than in the primary forest. Growing in degraded subsurface environments under increased competition, successional forest trees accessed deeper sources of moisture from unsaturated weathered bedrock and groundwater through the dry season; however, different species employed distinct water use strategies. Ceiba trichistandra maintained midday water potentials above -1.27 MPa through a drought avoidance strategy dependent on groundwater. Sideroxylon celastrinum tolerated drought by lowering predawn and midday water potential through the early dry season but took up greater proportions of saprolite moisture and groundwater as the dry season progressed. Contrastingly, Handroanthus chrysanthus maintained access to shallow soil and saprolite moisture by dropping midday water potential to -4.30 MPa, reflecting drought tolerance. Our results show that limited subsurface water resources in regenerating TDF's lead to species-specific adaptations reliant on deeper sources of moisture. The recovery of soil and saprolite hydrologic properties following disturbances is likely to exceed 100 years, highlighting the importance of forest conservation.

Keywords: Forest ecology; Hydrogeology; Plant-water uptake; Reforestation; Stable isotopes; Tropical dry forests.

MeSH terms

  • Age Factors
  • Droughts*
  • Ecosystem
  • Forests
  • Humans
  • Plant Leaves / physiology
  • Seasons
  • Soil
  • Trees* / physiology
  • Tropical Climate
  • Water / metabolism

Substances

  • Soil
  • Water