Flame Retardancy Properties and Physicochemical Characteristics of Polyurea-Based Coatings Containing Flame Retardants Based on Aluminum Hydroxide, Resorcinol Bis(Diphenyl Phosphate), and Tris Chloropropyl Phosphate

Materials (Basel). 2021 Sep 9;14(18):5168. doi: 10.3390/ma14185168.

Abstract

Polyurea is a synthetic material made by the reaction of isocyanate and polymer blend-containing amines. Due to its outstanding mechanical properties and fast curing, polyurea-based coatings have found dozens of applications, including waterproofing and anti-corrosion coatings. Further development of this material can create a flame-retardant product, a good alternative for common products available on the market, such as intumescent coatings. To improve the flame retardancy of polyurea, several flame retardants were investigated. The influence of aluminum hydroxide, resorcinol bis(diphenyl phosphate) (RDP), and tris chloropropyl phosphate (TCPP) on flame retardancy and morphology was studied. The following methods were used: infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, limiting oxygen index, and tensile strength. The examinations mentioned above showed the improvement of flame-retardancy of polyurea for two products: chlorinated organophosphate and organophosphate. Nevertheless, using the chlorinated organophosphate additive caused a rapid deterioration of mechanical properties.

Keywords: flame retardancy; infrared spectroscopy; oxygen index; polyurea; scanning electron microscopy; tensile strength; thermal stability; thermogravimetric analysis.