Exploring the kinetics of actinyl-EDTA reduction by ferrous iron using quantum-mechanical calculations

Phys Chem Chem Phys. 2021 Mar 11;23(9):5298-5314. doi: 10.1039/d0cp05179a.

Abstract

The reduction of An(vi) (An = U, Np, and Pu) to An(iv) significantly decreases its solubility and mobility. This reaction can be hindered by complexation with inorganic (e.g., carbonate) or organic ligands. Ethylenediaminetetraacetic acid (EDTA) is one such organic ligand that forms stable complexes with actinides. Therefore, it may enhance the mobility of actinides. However, the redox kinetics and mechanisms of actinyl (An(v/vi)O2+/2+)-EDTA are not well characterized yet and are thus studied here using quantum-mechanical calculations. The principle is to approach the actinyl-EDTA and Fe2+ (reductant) in small incremental steps and calculate the system energy at each distance. The overall reaction is then delineated into sub-processes (encounter frequency in bulk solution, formation of outer-sphere complex, transition from outer- to inner-sphere complex, and electron transfer), and reaction rates are determined for each sub-process. The formation of outer-sphere complexes occurs rapidly in microseconds to seconds over a wide range of actinyl concentrations (pM to μM); in contrast, the transition to the inner-sphere complex is relatively slow (milliseconds to a few seconds). Immediate electron transfer to form the pentavalent actinide is observed along the reaction path for Np(vi) and Pu(vi), but not for U(vi). Surprisingly, in acidic conditions, one of the carboxylic groups gets protonated in EDTA of [UO2(edta)]2- rather than one of the amino groups. This process-based series of calculations can be applied to any redox reaction and allows the prediction of changes to the rate law and rate-limiting step in a more fundamental way for different environments.