Microwave-assisted C-C bond formation of diarylacetylenes and aromatic hydrocarbons on carbon beads under continuous-flow conditions

Commun Chem. 2023 Apr 24;6(1):78. doi: 10.1038/s42004-023-00880-y.

Abstract

The synthesis of polycyclic aromatic compounds generally requires stoichiometric oxidants or homogeneous metal catalysts, however, the risk of contamination of inorganic residues can affect their properties. Here we present a microwave (MW)-assisted platinum on beaded activated carbon (Pt/CB)-catalyzed C-C bond formation of diarylacetylenes and aromatic hydrocarbons under continuous-flow conditions. Various fused aromatic compounds were continuously synthesized via dehydrogenative C(sp2)-C(sp2) and C(sp2)-C(sp3) bond formation with yields of up to 87% without the use of oxidants and bases. An activated, local reaction site on Pt/CB in the flow reaction channel reaching temperatures of more than three hundred degrees Celsius was generated in the catalyst cartridge by selective microwave absorption in CB with an absorption efficiency of > 90%. Mechanistic experiments of the transformation reaction indicated that a constant hydrogen gas supply was essential for activating Pt. This is an ideal reaction with minimal input energy and no waste production.