β-Glucan as a Sustainable Alternative to Stabilize Pavement Subgrade

Polymers (Basel). 2022 Jul 13;14(14):2850. doi: 10.3390/polym14142850.

Abstract

Beta glucan (β-Glucan), a polysaccharide biopolymer, is used to improve the subgrade strength of clayey soils in an attempt to advocate a sustainable, carbon-neutral, and eco-friendly stabilizer. A design thickness catalog was developed for a three-layered flexible pavement using 3D finite element analysis (FEA) and layered elastic analysis. The analyses were performed for β-glucan-treated fine-grained soils with varying traffic intensities based on a mechanistic design philosophy conforming to IRC: 37-2018. Genetic programming (GP) was employed to obtain equations governing the rutting and fatigue failure in pavements. Thirty-nine datasets were used in the determination and analysis of critical strains governing the failure of a flexible pavement. Energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Zetasizer analysis, and pH tests of the β-glucan-treated soil revealed the mechanism of strength improvement of the fine-grained soils. The savings in cost for a 1 km stretch of the pavement were estimated to be 14.3%.

Keywords: biopolymer; geotechnical; pavement subgrade stabilization.

Grants and funding

This research received no external funding.