Investigating the Trimethylaluminium/Water ALD Process on Mesoporous Silica by In Situ Gravimetric Monitoring

Nanomaterials (Basel). 2018 May 24;8(6):365. doi: 10.3390/nano8060365.

Abstract

A low amount of AlOx was successfully deposited on an unordered, mesoporous SiO₂ powder using 1⁻3 ALD (Atomic Layer Deposition) cycles of trimethylaluminium and water. The process was realized in a self-built ALD setup featuring a microbalanceand a fixed particle bed. The reactor temperature was varied between 75, 120, and 200 °C. The self-limiting nature of the deposition was verified by in situ gravimetric monitoring for all temperatures. The coated material was further analyzed by nitrogen sorption, inductively coupled plasma-optical emission spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, attenuated total reflection Fourier transformed infrared spectroscopy, and elemental analysis. The obtained mass gains correspond to average growth between 0.81⁻1.10 Å/cycle depending on substrate temperature. In addition, the different mass gains during the half-cycles in combination with the analyzed aluminum content after one, two, and three cycles indicate a change in the preferred surface reaction of the trimethylaluminium molecule from a predominately two-ligand exchange with hydroxyl groups to more single-ligand exchange with increasing cycle number. Nitrogen sorption isotherms demonstrate (1) homogeneously coated mesopores, (2) a decrease in surface area, and (3) a reduction of the pore size. The experiment is successfully repeated in a scale-up using a ten times higher substrate batch size.

Keywords: ALD; atomic layer deposition; fixed bed; in situ gravimetric; ligand exchange; mesoporous silica; particle coating.