FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels

Med Eng Phys. 2017 Aug:46:96-109. doi: 10.1016/j.medengphy.2017.06.001. Epub 2017 Jun 20.

Abstract

The primary aim of this work was to validate the "numerical" cortex material properties (transversely isotropic) of synthetic femurs and to evaluate how the strain level of the cancellous bone can be affected by the FE modeling of the material's behavior. Sensitivity analysis was performed to find out if the parameters of the cortex material affect global strain results more than the Polyurethane (PU) foam used to simulate cancellous bone. Standard 4th generation composite femurs were made with 0.32g/cm3 solid PU foam to model healthy cancellous bone, while 0.2g/cm3 cellular PU was used to model unhealthy cancellous bone. Longitudinal and transversal Young's moduli of cortical bone were defined according the manufacturer data, while shear modulus and Poisson's ratios were defined from the literature. All femurs were instrumented with rosette strain gauges and loaded according to ISO7206 standards, simulating a one-legged stance. The experimental results were then compared with those from finite element analysis. When cortical bone was modelled as transversely isotropic, an overall FE/experimental error of 11% was obtained. However, with isotropic material the error rose to 20%. Strain field distributions predicted inside the two bone models were similar, but the strain state of a healthy cancellous bone was much more a compression state than that of unhealthy bone, the compression state decreased about 90%. Strain magnitudes show that average strain-levels of cancellous bone can be significantly affected by the properties of the cortical bone material and, therefore, simulations of femur-implanted systems must account for the composite behavior of the cortex, since small shear strains would develop near isotropic cancellous bone-implant interfaces. Moreover, the authors suggest that changing the volume fraction of glass fibers used to manufacture the cortical bone would allow a more realistic osteoporotic synthetic femurs to be produced.

Keywords: Experimental; Finite-element models; Strains; Synthetic femurs; Unhealthy femur.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomimetic Materials*
  • Femur*
  • Finite Element Analysis*
  • Materials Testing*
  • Stress, Mechanical*