Impact of Phenolic Acid Derivatives on the Oxidative Stability of β-Lactoglobulin-Stabilized Emulsions

Antioxidants (Basel). 2023 Jan 12;12(1):182. doi: 10.3390/antiox12010182.

Abstract

Proteins, such as β-lactoglobulin (β-Lg), are often used to stabilize oil-water-emulsions. By using an additional implementation of phenolic compounds (PC) that might interact with the proteins, the oxidative stability can be further improved. Whether PC have a certain pro-oxidant effect on oxidation processes, while interacting non-covalently (pH-6) or covalently (pH.9) with the interfacial protein-film, is not known. This study aimed to characterize the impact of phenolic acid derivatives (PCDs) on the antioxidant efficacy of the interfacial β-Lg-film, depending on their structural properties and pH-value. Electron paramagnetic resonance (EPR) analyses were performed to assess the radical scavenging in the aqueous and oil phases of the emulsion, and the complexation of transition metals: these are well known to act as pro-oxidants. Finally, in a model linseed oil emulsion, lipid oxidation products were analyzed over storage time in order to characterize the antioxidant efficacy of the interfacial protein-film. The results showed that, at pH.6, PCDs can scavenge hydrophilic radicals and partially scavenge hydrophobic radicals, as well as reduce transition metals. As expected, transition metals are complexed to only a slight degree, leading to an increased lipid oxidation through non-complexed reduced transition metals. At pH.9, there is a strong complexation between PCDs and the transition metals and, therefore, a decreased ability to reduce the transition metals; these do not promote lipid oxidation in the emulsion anymore.

Keywords: iron reducing power; oil-water-emulsions; oxidation products; phenolic acid derivatives; pro-oxidant; radical scavenging; transition metal complexation; β-lactoglobulin.

Grants and funding

This research received no external funding.