Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF₄/O₂ Plasma Chambers Using Y₂O₃ and YF₃ Protective Coatings

Nanomaterials (Basel). 2017 Jul 14;7(7):183. doi: 10.3390/nano7070183.

Abstract

Yttrium fluoride (YF₃) and yttrium oxide (Y₂O₃) protective coatings prepared using an atmospheric plasma spraying technique were used to investigate the relationship between surface erosion behaviors and their nanoparticle generation under high-density plasma (1012-1013 cm-3) etching. As examined by transmission electron microscopy, the Y₂O₃ and YF₃ coatings become oxyfluorinated after exposure to the plasma, wherein the yttrium oxyfluoride film formation was observed on the surface with a thickness of 5.2 and 6.8 nm, respectively. The difference in the oxyfluorination of Y₂O₃ and YF₃ coatings could be attributed to Y-F and Y-O bonding energies. X-ray photoelectron spectroscopy analyses revealed that a strongly fluorinated bonding (Y-F bond) was obtained on the etched surface of the YF₃ coating. Scanning electron microscopy and energy dispersive X-ray diffraction analysis revealed that the nanoparticles on the 12-inch wafer are composed of etchant gases and Y₂O₃. These results indicate that the YF₃ coating is a more erosion-resistant material, resulting in fewer contamination particles compared with the Y₂O₃ coating.

Keywords: atmospheric plasma spraying (APS); particle contamination; yttrium fluoride (YF3); yttrium oxide (Y2O3).