Feasibility of Dynamic Inhaled Gas MRI-Based Measurements Using Acceleration Combined with the Stretched Exponential Model

Diagnostics (Basel). 2023 Jan 30;13(3):506. doi: 10.3390/diagnostics13030506.

Abstract

Dynamic inhaled gas (3He/129Xe/19F) MRI permits the acquisition of regional fractional-ventilation which is useful for detecting gas-trapping in lung-diseases such as lung fibrosis and COPD. Deninger's approach used for analyzing the wash-out data can be substituted with the stretched-exponential-model (SEM) because signal-intensity is attenuated as a function of wash-out-breath in 19F lung imaging. Thirteen normal-rats were studied using 3He/129Xe and 19F MRI and the ventilation measurements were performed using two 3T clinical-scanners. Two Cartesian-sampling-schemes (Fast-Gradient-Recalled-Echo/X-Centric) were used to test the proposed method. The fully sampled dynamic wash-out images were retrospectively under-sampled (acceleration-factors (AF) of 10/14) using a varying-sampling-pattern in the wash-out direction. Mean fractional-ventilation maps using Deninger's and SEM-based approaches were generated. The mean fractional-ventilation-values generated for the fully sampled k-space case using the Deninger method were not significantly different from other fractional-ventilation-values generated for the non-accelerated/accelerated data using both Deninger and SEM methods (p > 0.05 for all cases/gases). We demonstrated the feasibility of the SEM-based approach using retrospective under-sampling, mimicking AF = 10/14 in a small-animal-cohort from the previously reported dynamic-lung studies. A pixel-by-pixel comparison of the Deninger-derived and SEM-derived fractional-ventilation-estimates obtained for AF = 10/14 (≤16% difference) has confirmed that even at AF = 14, the accuracy of the estimates is high enough to consider this method for prospective measurements.

Keywords: compressed sensing; fluorine-19; inert fluorinated gas MRI; lung magnetic resonance imaging; stretched exponential model.