CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway

Int J Mol Sci. 2021 Aug 13;22(16):8727. doi: 10.3390/ijms22168727.

Abstract

Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.

Keywords: NF-κB pathway; age-related macular degeneration (AMD); complement factor H (CFH); cytokines; inflammation; retinal pigment epithelium (RPE) cells.

MeSH terms

  • Cell Line
  • Complement Factor H / genetics
  • Complement System Proteins / metabolism
  • Cytokines / genetics
  • Cytokines / metabolism*
  • Gene Expression Regulation
  • Gene Silencing*
  • Humans
  • Macular Degeneration / genetics*
  • Macular Degeneration / immunology
  • Models, Biological
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Retinal Pigment Epithelium / immunology*
  • Retinal Pigment Epithelium / metabolism
  • Signal Transduction

Substances

  • CFH protein, human
  • Cytokines
  • NF-kappa B
  • Complement Factor H
  • Complement System Proteins