Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015-2019

Sci Rep. 2022 Mar 11;12(1):4293. doi: 10.1038/s41598-022-08377-9.

Abstract

The "comparative attitude" of urban agglomerations involves multidimensional perspectives such as infrastructure, ecological protection, and air pollution. Based on monitoring station data, comparative studies of multispatial, multitimescale and multiemission pollution sources of air quality on 19 urban agglomerations during the 13th Five-Year Plan period in China were explored by mathematical statistics. The comparison results are all visualized and show that clean air days gradually increased and occurred mainly in summer, especially in South and Southwest China. PM2.5, PM10 and O3 were still the main primary pollutants. PM2.5 is mainly concentrated in December, January and February, and PM10 is mainly concentrated in October-November and March-April. The O3 pollution in the Pearl River Delta and Beibu Gulf urban agglomerations located in the south is mainly concentrated from August to November, which is different from others from May to September. Second, from 2015 to 2019, the increasing rate of O3 concentration in any hour is higher than that of particulate matter (PM). Diurnal trends in O3 concentration in all directions also showed a single peak, with the largest increments that appeared between 13:00 and 16:00, while the spatial distribution of this peak was significantly regional, earlier in the east but later in the west. Third, this analysis indicated that the annual average air quality index (AQI) showed a gradually decreasing trend outward, taking the Central Plain urban agglomeration as the center. The ambient air pollutants are gradually moving southward and mainly concentrated in the Central Plains urban agglomeration from 2015 to 2019. Furthermore, in each urban agglomeration, the cumulative emission of PM2.5 is consisted of the four average emissions, which is approximately 2.5 times of that of PM10, and industries are the main sources of PM2.5, PM10 and VOCs (volatile organic compounds). VOCs and NOX increased in half of the urban agglomerations, which are the reasons for the increase in ozone pollution. The outcomes of this study will provide targeted insights on pollution prevention in urban agglomerations in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • China
  • Environmental Monitoring / methods
  • Particulate Matter / analysis

Substances

  • Air Pollutants
  • Particulate Matter