Mitochondrial Genomes of Two Asexual Trichogramma (Hymenoptera: Trichogrammatidae) Strains and Comparison with Their Sexual Relatives

Insects. 2022 Jun 16;13(6):549. doi: 10.3390/insects13060549.

Abstract

Despite its substantial costs, sexual reproduction dominates in animals. One popular explanation for the paradox of sex is that asexual reproduction is more likely to accumulate deleterious mutations than sexual reproduction. To test this hypothesis, we compared the mitogenomes of two asexual wasp strains, Trichogramma cacoeciae and T. pretiosum, to their sexual relatives. These two asexual strains represent two different transition mechanisms in Trichogramma from sexual to asexual reproduction. Asexual T. pretiosum is induced by Wolbachia, while T. cacoeciae presumably originated from interspecific hybridization. We sequenced and assembled complete mitochondrial genomes of asexual T. cacoeciae and T. pretiosum. Compared to four sexual relatives, we found no evidence of higher mutation accumulation in asexual Trichogramma mitogenomes than in their sexual relatives. We also did not detect any relaxed selection in asexual Trichogramma mitogenomes. In contrast, the intensified selection was detected in Nad1 and Nad4 of the asexual T. pretiosum mitogenome, suggesting more purifying selection. In summary, no higher mitochondrial mutation accumulation was detected in these two asexual Trichogramma strains. This study provides a basis for further investigating mitochondrial evolution and asexual reproduction in Trichogramma.

Keywords: Trichogramma; asexual reproduction; mitochondrial genome; mutation accumulation.