Impact of Relative Humidity on Wood Sample: A Climate Chamber Experimental Simulation Monitored by Digital Holographic Speckle Pattern Interferometry

J Imaging. 2019 Jul 18;5(7):65. doi: 10.3390/jimaging5070065.

Abstract

Relative humidity (RH) changes are a natural environmental effect that forces organic materials to a constant cycle of achieving equilibrium. The present work is part of an ongoing research based on the hypothesis that the inevitable deleterious effects of the RH natural cycle may be prevented or minimized if a deformation threshold is assigned to each monitored endangered object prior to exposure to structural damage. In this paper the characterization of the behavior of a softwood sample (1.0 cm thick) submitted to RH abrupt cycles has been performed, in terms of mass and rate of displacement of the surface. The exemplary study is based on the concept of recording the RH impact directly from the material surface, allowing us to identify diversity in reaction with time, which in turn could determine the onset of structural changes prior to irreversible damage. The RH impact is measured as surface deformation from interference fringes, using a custom-made real time holography system with interferometric precision termed digital holographic speckle-pattern interferometry (DHSPI). The main observations presented here are a hysteresis in the dynamic sorption isotherm and a greater rate of displacement during the drying. A long-term experiment was performed to identify signs of ageing of the sample. The evolution of the mass and the rate of displacement stayed similar, an offset with an interesting behavior was observed and highlights ageing of wood. In order to produce a future preventive model for distinct art objects it is necessary to determine a deformation threshold for each material. In this context the study was planned to continue with organic samples bearing variable density and thickness under longer-term RH cycles and monitoring until the samples show visible signs of irreversible damage.

Keywords: DHSPI; climate impact; cultural heritage; deformation; digital holographic speckle pattern interferometry; holographic interferometry; relative humidity; sorption isotherm; wood.