Effect of Phase Fluctuation on the Proper Operation of Smart Gear Health Monitoring System

Sensors (Basel). 2022 Apr 22;22(9):3231. doi: 10.3390/s22093231.

Abstract

A smart gear sensor system has been developed for the condition monitoring of gear. This system includes a smart gear-the operation gear and a monitoring antenna. The analysis of the return loss of the monitoring antenna magnetically coupled with the smart gear gives the health condition of the gear. This research considers the effects of the distance and phase fluctuations between two components on the magnetic resonant return loss. The impacts of phase fluctuations include both static and high-speed conditions. Two experimental rigs have been built for the two cases. The coupling distance and static phase fluctuation are conducted via the first experimental rig. The second experimental rig performs both the coupling distance and phase fluctuation effect simultaneously while the smart gear rotates at high speed. During each test, the monitoring antenna return loss is captured thanks to a network analyzer. Analysis of the return loss data demonstrates that both the coupling distance and the change of the phase angle at the static condition and high speed have influenced the resonant return loss of the monitoring antenna. These findings are meaningful to the authors for evaluating and improving the accuracy of this gear health monitoring technique.

Keywords: gear health monitoring; magnetically coupled circuits; plastic gear; printed sensor; printed spiral antenna; smart gear.

MeSH terms

  • Monitoring, Physiologic*