Supramolecular self-organisation and conformational isomerism of a binuclear O,O'-dipropyl dithiophosphate gold(I) complex, [Au2{S2P(OC3H7)2}2]: Synthesis, (13)C and (31)P CP/MAS NMR spectroscopy, single-crystal X-ray diffraction study and thermal behaviour

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Oct 5:149:881-8. doi: 10.1016/j.saa.2015.04.068. Epub 2015 May 8.

Abstract

Crystalline one-dimensional polymeric catena-poly[bis(μ2-O,O'-dipropyldithiophosphato-S,S')digold(I)] (Au-Au) (1) was prepared and studied using (13)C and (31)P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. To elucidate the structural function of Dtph ligands in crystalline gold(I) O,O'-dipropyl dithiophosphate, the chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in (31)P MAS NMR spectra. A novel structure of the gold(I) compound comprises two isomeric, non-centrosymmetric binuclear molecules of [Au2{S2P(OC3H7)2}2] (isomers 'A' and 'B'), whose four Dtph groups display structural inequivalence. In each isomeric binuclear molecule of 1, a pair of μ2-bridging dipropyl Dtph ligands almost symmetrically links two neighbouring gold atoms, forming an extensive eight-membered metallocycle [Au2S4P2], while the intramolecular aurophilic Au⋯Au bond additionally stabilises this central cyclic moiety. At the supramolecular level of complex 1, intermolecular aurophilic Au⋯Au bonds yield almost linear infinite polymeric chains (⋯'A'⋯'B'⋯'A'⋯'B'⋯)n. The thermal behaviour of this compound was studied by the simultaneous thermal analysis (STA) technique (a combination of TG and DSC) under an argon atmosphere.

Keywords: (31)P chemical shift anisotropy parameters; Aurophilic bonding; Binuclear gold(I) O,O′-dipropyl dithiophosphate; Conformational isomerism; Heteronuclear ((13)C, (31)P) CP/MAS NMR spectroscopy; Supramolecular self-organisation.

Publication types

  • Research Support, Non-U.S. Gov't