Design of Fractional Order Odd-Harmonics Repetitive Controller for Discrete-Time Linear Systems with Experimental Validations

Sensors (Basel). 2022 Nov 16;22(22):8873. doi: 10.3390/s22228873.

Abstract

This paper presents a simple and straightforward design of a discrete-time fractional-order odd-harmonics repetitive controller (RC). Unlike general RC designs, the proposed method utilizes an internal model with a half-period delay and a stabilizing controller with a fractional phase lead compensator. First, the odd-harmonics internal model representing odd-harmonics frequencies is constructed by using the information of the reference's basis period and the preferred tracking bandwidth. Secondly, an optimization problem synthesized from the stability condition of the RC closed-loop system is solved to obtain the fractional phase lead compensator. Finally, the fractional term of the stabilizing controller is realized by using a causal and stable infinite impulse response (IIR) filter, where the filter coefficients are computed by applying the Thiran formula. Simulation and experimental validation on a servomotor system are conducted to verify the effectiveness of the proposed design.

Keywords: fractional stabilizing controller; odd-harmonics internal model; optimization; repetitive controller.

Grants and funding

The authors received financial support for publication from the UPLAND Project, with the support of IsDB and IFAD, that focus to increase smallholders’ agriculture productivity, incomes, livelihoods, and resilience in the targeted area. Meanwhile, the research was supported by Research Center for Photonics, National Research and Innovation Agency (BRIN), Indonesia.