Inhibition of Rho GTPases in Invertebrate Growth Cones Induces a Switch in Responsiveness to Retinoic Acid

Biomolecules. 2019 Sep 7;9(9):460. doi: 10.3390/biom9090460.

Abstract

During development, growth cones are essential for axon pathfinding by sensing numerous guidance cues in their environment. Retinoic acid, the metabolite of vitamin A, is important for neurite outgrowth during vertebrate development, but may also play a role in axon guidance, though little is known of the cellular mechanisms involved. Our previous studies showed that retinoid-induced growth cone turning of invertebrate motorneurons requires local protein synthesis and calcium influx. However, the signalling pathways that link calcium influx to cytoskeletal dynamics involved in retinoid-mediated growth cone turning are not currently known. The Rho GTPases, Cdc42 and Rac, are known regulators of the growth cone cytoskeleton. Here, we demonstrated that inhibition of Cdc42 or Rac not only prevented growth cone turning toward retinoic acid but could also induce a switch in growth cone responsiveness to chemorepulsion or growth cone collapse. However, the effects of Cdc42 or Rac inhibition on growth cone responsiveness differed, depending on whether the turning was induced by the all-trans or 9-cis retinoid isomer. The effects also differed depending on whether the growth cones maintained communication with the cell body. These data strongly suggest that Cdc42 and Rac are downstream effectors of retinoic acid during growth cone guidance.

Keywords: Vitamin A; axon guidance; cytoskeleton; retinoid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Enzyme Inhibitors / pharmacology*
  • Growth Cones / drug effects*
  • Growth Cones / metabolism
  • Lymnaea*
  • Tretinoin / chemistry
  • Tretinoin / pharmacology*
  • cdc42 GTP-Binding Protein / antagonists & inhibitors
  • rho GTP-Binding Proteins / antagonists & inhibitors*

Substances

  • Enzyme Inhibitors
  • Tretinoin
  • cdc42 GTP-Binding Protein
  • rho GTP-Binding Proteins