Generalized Design, Modeling and Control Methodology for a Snake-like Aerial Robot

Sensors (Basel). 2023 Feb 7;23(4):1882. doi: 10.3390/s23041882.

Abstract

Snake-like robots have been developing in recent decades, and various bio-inspired ideas are deployed in both the mechanical and locomotion aspects. In recent years, several studies have proposed state-of-the-art snake-like aerial robots, which are beyond bio-inspiration. The achievement of snake-like aerial robots benefits both aerial maneuvering and manipulation, thereby having importance in various fields, such as industry surveillance and disaster rescue. In this work, we introduce our development of the modular aerial robot which can be considered a snake-like robot with high maneuverability in flight. To achieve such flight, we first proposed a unique thrust vectoring apparatus equipped with dual rotors to enable three-dimensional thrust force. Then, a generalized modeling method based on dynamics approximation is proposed to allocate the wrench in the center-of-gravity (CoG) frame to thrust forces and vectoring angles. We further developed a generalized control framework that can handle both under-actuated and fully actuated models. Finally, we show the experimental results with two different platforms to evaluate the flight stability of the proposed snake-like aerial robot. We believe that the proposed generalized methods can provide a solid foundation for the snake-like aerial robot and its applications regarding maneuvering and manipulation in midair.

Keywords: aerial robot; modeling and control; snake-like.