Suppression of Glucocorticoid Response in Stressed Mice Using 50 Hz Electric Field According to Immobilization Degree and Posture

Biology (Basel). 2022 Sep 9;11(9):1336. doi: 10.3390/biology11091336.

Abstract

Various studies on immobilized BALB/c mice to evaluate changes in hormone levels associated with stress responses have advanced the characterization of multiple aspects of the biological actions of extremely low-frequency (ELF) electric fields (EFs). In this study, we aimed to investigate the effect of mouse posture on its stress responses and evaluate the importance of adjusting the stress degree in the model. Mice were immobilized inside centrifuge tubes and exposed to an ELF EF generated between parallel plate electrodes. Blood was collected under anesthesia immediately after EF exposure, and plasma glucocorticoids were assayed. The inhibitory effects of EFs on glucocorticoid elevation by immobilization were reproduced regardless whether mice were in the abdominal or lateral recumbent position, for the EF vector delivered to mice through the sagittal or frontal plane. The effect of ELF EF was reproduced in moderately and mildly stressed mice but not in severely immobilized mice. Hence, adjusting the stress degree is critical to the reproducibility of the results for this model. We characterized the effects of ELF EF on homeostasis, including the stress response, and provided valuable information for the scientific evaluation of the biological risks and medical applications of ELF EF.

Keywords: electrical stimulation; endocrine response; extremely low frequency; stress.

Grants and funding

This research received no external funding.