Summated Hazard Score as a Powerful Predictor of Fatigue in Relation to Pacing Strategy

Int J Environ Res Public Health. 2021 Feb 18;18(4):1984. doi: 10.3390/ijerph18041984.

Abstract

During competitive events, the pacing strategy depends upon how an athlete feels at a specific moment and the distance remaining. It may be expressed as the Hazard Score (HS) with momentary HS being shown to provide a measure of the likelihood of changing power output (PO) within an event and summated HS as a marker of how difficult an event is likely to be perceived to be. This study aimed to manipulate time trial (TT) starting strategies to establish whether the summated HS, as opposed to momentary HS, will improve understanding of performance during a simulated cycling competition. Seven subjects (peak PO: 286 ± 49.7 W) performed two practice 10-km cycling TTs followed by three 10-km TTs with imposed PO (±5% of mean PO achieved during second practice TT and a self-paced TT). PO, rating of perceived exertion (RPE), lactate, heart rate (HR), HS, summated HS, session RPE (sRPE) were collected. Finishing time and mean PO for self-paced (time: 17.51 ± 1.41 min; PO: 234 ± 62.6 W), fast-start (time: 17.72 ± 1.87 min; PO: 230 ± 62.0 W), and slow-start (time: 17.77 ± 1.74 min; PO: 230 ± 62.7) TT were not different. There was a significant interaction between each secondary outcome variable (PO, RPE, lactate, HR, HS, and summated HS) for starting strategy and distance. The evolution of HS reflected the imposed starting strategy, with a reduction in PO following a fast-start, an increased PO following a slow-start with similar HS during the last part of all TTs. The summated HS was strongly correlated with the sRPE of the TTs (r = 0.88). The summated HS was higher with a fast start, indicating greater effort, with limited time advantage. Thus, the HS appears to regulate both PO within a TT, but also the overall impression of the difficulty of a TT.

Keywords: RPE; cycling; pacing; performance; time trial.

MeSH terms

  • Athletes
  • Bicycling*
  • Fatigue*
  • Heart Rate
  • Humans
  • Oxygen Consumption
  • Physical Exertion
  • Time Factors